唐艺恒 1,2翁阳 1,2陈泽群 1,2李晓静 3,4[ ... ]李兰 1,2,*
作者单位
摘要
1 西湖大学工学院浙江省3D微纳加工和表征研究重点实验室,浙江 杭州 310030
2 浙江西湖高等研究院前沿技术研究所,浙江 杭州 310024
3 浙江大学脑科学与脑医学学院,浙江 杭州 310058
4 浙江大学脑与脑机融合前沿科学中心,浙江 杭州 310058
5 浙江大学光电科学与工程学院,浙江 杭州 310027
6 浙江大学信息与电子工程学院,浙江 杭州 310027
作为光遗传学的重要工具,纳米光遗传探针用于实现对生物体神经元的光刺激,能够辅助神经科学家更具特异性地探索大脑的工作机制,有望用于神经疾病的发病机理分析和治疗。研究人员针对光遗传学刺激的刺激强度、刺激范围、刺激模式、时空分辨率等要求,开发了具有不同光学功能的探针,也针对丰富探针功能如原位电生理记录、化学或生物分子递送等要求,开发了多功能的神经探针。为克服传统光电子器件刚性不可弯折、易对生物体造成损伤等弊端,柔性光学神经探针应运而生。这一类探针在植入时对生物体的损伤小,在植入后能够维持稳定的出光强度,其使用寿命得到保证。本文围绕不同类型、不同功能的光遗传探针以及光遗传探针中的柔性技术进行综述和展望。
光学神经探针 光遗传学 柔性 波导集成型探针 深脑部刺激 生物兼容材料 
激光与光电子学进展
2023, 60(13): 1316001
Author Affiliations
Abstract
1 Zhejiang University, College of Information Science and Electronic Engineering, State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Micro-Nano Electronics and Smart System of Zhejiang Province, Hangzhou, China
2 Westlake University, School of Engineering, Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Hangzhou, China
3 Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, China
4 Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, China
5 Peking University, School of Physics, Frontiers Science Center for Nano-optoelectronics, State Key Laboratory for Mesoscopic Physics, Beijing, China
Optical neural networks (ONNs), enabling low latency and high parallel data processing without electromagnetic interference, have become a viable player for fast and energy-efficient processing and calculation to meet the increasing demand for hash rate. Photonic memories employing nonvolatile phase-change materials could achieve zero static power consumption, low thermal cross talk, large-scale, and high-energy-efficient photonic neural networks. Nevertheless, the switching speed and dynamic energy consumption of phase-change material-based photonic memories make them inapplicable for in situ training. Here, by integrating a patch of phase change thin film with a PIN-diode-embedded microring resonator, a bifunctional photonic memory enabling both 5-bit storage and nanoseconds volatile modulation was demonstrated. For the first time, a concept is presented for electrically programmable phase-change material-driven photonic memory integrated with nanosecond modulation to allow fast in situ training and zero static power consumption data processing in ONNs. ONNs with an optical convolution kernel constructed by our photonic memory theoretically achieved an accuracy of predictions higher than 95% when tested by the MNIST handwritten digit database. This provides a feasible solution to constructing large-scale nonvolatile ONNs with high-speed in situ training capability.
phase-change materials optical neural networks photonic memory silicon photonics reconfigurable photonics 
Advanced Photonics
2023, 5(4): 046004
Chunlei Sun 1,2†Yuexin Yin 1,3†Zequn Chen 1,2Yuting Ye 1,2[ ... ]Lan Li 1,2,*
Author Affiliations
Abstract
1 Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
2 Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
3 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
4 Key Laboratory of Micro-Nano Electronics and Smart System of Zhejiang Province, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
5 School of Microelectronics, Zhejiang University, Hangzhou 310027, China
Free-spectral-range (FSR)-free optical filters have always been a critical challenge for photonic integrated circuits. A high-performance FSR-free filter is highly desired for communication, spectroscopy, and sensing applications. Despite significant progress in integrated optical filters, the FSR-free filter with a tunable narrow-band, high out-of-band rejection, and large fabrication tolerance has rarely been demonstrated. In this paper, we propose an exact and robust design method for add-drop filters (ADFs) with an FSR-free operation capability, a sub-nanometer optical bandwidth, and a high out-of-band rejection (OBR) ratio. The achieved filter has a 3-dB bandwidth of < 0.5 nm and an OBR ratio of 21.5 dB within a large waveband of 220 nm, which to the best of our knowledge, is the largest-FSR ADF demonstrated on a silicon photonic platform. The filter exhibits large tunability of 12.3 nm with a heating efficiency of 97 pm/mW and maintains the FSR-free feature in the whole tuning process. In addition, we fabricated a series of ADFs with different periods, which all showed reliable and excellent performances.
PhotoniX
2022, 3(1): 12
作者单位
摘要
浙江大学 信息与电子工程学院,浙江 杭州 310063
信息技术的发展使得通讯波段集成光子技术在过去的几十年中被广泛重视并取得了突出进展,目前已走向商业化,这一技术的发展也激发了人们对于中红外波段(2~20 μm)片上光子集成的兴趣。中红外波段在空间光通信、热成像、物质探测分析等关乎国家发展、**安全、民生改善等技术领域具有重要的应用前景。利用半导体工艺实现中红外光电子系统芯片小型化在尺寸、功耗以及大规模量产部署具有重大优势。因此,发展中红外片上集成光电子技术具有重大意义。文中主要针对于中红外波段片上集成的一些关键基础器件(如:调制器、探测器)的突破性进展及代表性工作进行了回顾;对各器件的种类、性能、参数及加工手段分别进行了较为全面的调研与比较;同时,也对器件的发展进程、亟待解决的问题以及对未来的展望进行了总结。
中红外 集成光子 光学探测器 Mid-IR integrated photonics optical sensor 
红外与激光工程
2022, 51(1): 20211111
Author Affiliations
Abstract
The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-energy-consumption computing. Existing computing instruments are pre-dominantly electronic processors, which use electrons as information carriers and possess von Neumann architecture featured by physical separation of storage and processing. The scaling of computing speed is limited not only by data transfer between memory and processing units, but also by RC delay associated with integrated circuits. Moreover, excessive heating due to Ohmic losses is becoming a severe bottleneck for both speed and power consumption scaling. Using photons as information carriers is a promising alternative. Owing to the weak third-order optical nonlinearity of conventional materials, building integrated photonic computing chips under traditional von Neumann architecture has been a challenge. Here, we report a new all-optical computing framework to realize ultrafast and ultralow-energy-consumption all-optical computing based on convolutional neural networks. The device is constructed from cascaded silicon Y-shaped waveguides with side-coupled silicon waveguide segments which we termed “weight modulators” to enable complete phase and amplitude control in each waveguide branch. The generic device concept can be used for equation solving, multifunctional logic operations as well as many other mathematical operations. Multiple computing functions including transcendental equation solvers, multifarious logic gate operators, and half-adders were experimentally demonstrated to validate the all-optical computing performances. The time-of-flight of light through the network structure corresponds to an ultrafast computing time of the order of several picoseconds with an ultralow energy consumption of dozens of femtojoules per bit. Our approach can be further expanded to fulfill other complex computing tasks based on non-von Neumann architectures and thus paves a new way for on-chip all-optical computing.
Opto-Electronic Advances
2021, 4(11): 200060-1
菅佳玲 1,2叶羽婷 1,2李钧颖 3施依琳 1,2[ ... ]李兰 1,2,*
作者单位
摘要
1 西湖大学工学院,浙江省3D微纳加工和表征研究重点实验室,杭州 310024
2 浙江西湖高等研究院前沿技术研究所,杭州 310024
3 浙江大学信息与电子工程学院,杭州 310027
硫系玻璃由于具有较高的折射率、宽的红外波段透明窗口、较低的非线性损耗和较快的非线性响应,在光学器件领域具有巨大的应用潜力。随着近年来微纳器件加工技术的进步,基于硫系玻璃制备的新型微纳光子器件,在通信、安全、医疗、环境等领域得到了广泛的应用。本工作从硫系玻璃的物理光学性质出发,就硫系玻璃的薄膜制备工艺、微纳器件加工方法、光学器件应用及发展前景分别展开论述。
硫系玻璃 微纳光子器件 集成光学 中红外传感 相变材料 柔性光子 chalcogenide glasses micro/nano photonic devices integrated photonics mid-infrared sensing phase change materials flexible photonics 
硅酸盐学报
2021, 49(12): 2676
Author Affiliations
Abstract
1 State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310007, China
2 Institute of Microelectronics, Chinese Academic Society, Beijing 100029, China
3 Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310007, China
4 Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310023, China
As a promising spectral window for optical communication and sensing, it is of great significance to realize on-chip devices at the 2 µm waveband. The development of the 2 µm silicon photonic platform mainly depends on the performance of passive devices. In this work, the passive devices were fabricated in the silicon photonic multi-project wafer process. The designed micro-ring resonator with a 0.6 µm wide silicon ridge waveguide based on a 220 nm silicon-on-insulator platform achieves a high intrinsic quality factor of 3.0×105. The propagation loss is calculated as 1.62 dB/cm. In addition, the waveguide crossing, multimode interferometer, and Mach–Zehnder interferometer were demonstrated at 2 µm with good performances.
silicon photonics integrated photonics grating coupler multimode interferometer waveguide crossing 
Chinese Optics Letters
2021, 19(7): 071301
Chunlei Sun 1,2Chuyu Zhong 3,4Maoliang Wei 3,4Hui Ma 3,4[ ... ]Lan Li 1,2,*
Author Affiliations
Abstract
1 Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
2 Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
3 Key Laboratory of Micro-Nano Electronics and Smart System of Zhejiang Province, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
4 School of Microelectronics, Zhejiang University, Hangzhou 310027, China
Optical filters are essential parts of advanced optical communication and sensing systems. Among them, the ones with an ultrawide free spectral range (FSR) are especially critical. They are promising to provide access to numerous wavelength channels highly desired for large-capacity optical transmission and multipoint multiparameter sensing. Present schemes for wide-FSR filters either suffer from limited cavity length or poor fabrication tolerance or impose an additional active-tuning control requirement. We theoretically and experimentally demonstrate a filter that features FSR-free operation capability, subnanometer optical bandwidth, and acceptable fabrication tolerance. Only one single deep dip within a record-large waveband (S+C+L band) is observed by appropriately designing a side-coupled Bragg-grating-assisted Fabry–Perot filter, which has been applied as the basic sensing unit for both the refractive index and temperature measurement. Five such basic units are also cascaded in series to demonstrate a multichannel filter. This work provides a new insight to design FSR-free filters and opens up a possibility of flexible large-capacity integration using more wavelength channels, which will greatly advance integrated photonics in optical communication and sensing.
Photonics Research
2021, 9(6): 06001013
Author Affiliations
Abstract
1 The Chinese University of Hong Kong, Department of Biomedical Engineering, Hong Kong, China
2 Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, Massachusetts, United States
3 Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts, United States
4 Zhejiang University, College of Information Science and Electronic Engineering, Hangzhou, China
5 Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, Massachusetts, United States
6 Massachusetts Institute of Technology, Laser Biomedical Research Center, Cambridge, Massachusetts, United States
7 Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, Massachusetts, United States
8 The Chinese University of Hong Kong, Shun Hing Institute of Advanced Engineering, Hong Kong, China
A new optical microscopy technique, termed high spatial and temporal resolution synthetic aperture phase microscopy (HISTR-SAPM), is proposed to improve the lateral resolution of wide-field coherent imaging. Under plane wave illumination, the resolution is increased by twofold to around 260 nm, while achieving millisecond-level temporal resolution. In HISTR-SAPM, digital micromirror devices are used to actively change the sample illumination beam angle at high speed with high stability. An off-axis interferometer is used to measure the sample scattered complex fields, which are then processed to reconstruct high-resolution phase images. Using HISTR-SAPM, we are able to map the height profiles of subwavelength photonic structures and resolve the period structures that have 198 nm linewidth and 132 nm gap (i.e., a full pitch of 330 nm). As the reconstruction averages out laser speckle noise while maintaining high temporal resolution, HISTR-SAPM further enables imaging and quantification of nanoscale dynamics of live cells, such as red blood cell membrane fluctuations and subcellular structure dynamics within nucleated cells. We envision that HISTR-SAPM will broadly benefit research in material science and biology.
quantitative phase microscopy label-free imaging material inspection cell dynamics observation 
Advanced Photonics
2020, 2(6): 065002
作者单位
摘要
1 Key Laboratory of Micro-Nano Electronics and Smart System of Zhejiang Province, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
2 School of Microelectronics, Zhejiang University, Hangzhou 310027, China
3 College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
graphene saturable absorption low power consumption all-optical modulation 
Frontiers of Optoelectronics
2020, 13(2): 114

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!